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ABSTRACT

To study the mechanism of anomalous transport in tokamaks requires the

use of sophisticated diagnostic tools for the measurement of short-scale

turbulent fluctuations. In this article, we describe an attempt at developing

a technique capable of providing a comprehensive description of plasma

fluctuations with k i⊥ <ρ 1, such as those driven by the Ion Temperature

Gradient mode in tokamaks. The proposed method is based on microwave

reflectometry, and stems from a series of numerical calculations showing

that the spatial structure of fluctuations near the cutoff could be obtained

from the phase of reflected waves when these are collected with a wide

aperture optical system forming an image of the cutoff onto an array of

phase sensitive detectors. Preliminary measurements with a prototype

apparatus on the Torus Experiment for Technology Oriented Research 94

(TEXTOR-94) [U. Samm, Proceedings of the 16th IEEE Symposium on

Fusion Engineering, 1995 (IEEE, Piscataway, NJ, 1995), p. 470] confirm

the validity of these conclusions. Technical issues in the application of the

proposed technique to tokamaks are discussed in this article, and the

conceptual design of an imaging reflectometer for the visualization of

turbulent fluctuations in the National Spherical Torus Experiment (NSTX)

[M. Ono, et al., Nucl. Fusion 40, 557 (2000)] is described.

Key words: Tokamak, anomalous transport, plasma turbulence, turbulent

fluctuations, microwave imaging reflectometry.
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I. INTRODUCTION

Understanding the mechanism of anomalous transport in tokamaks is one of the great

challenges of fusion research. Indeed, since most explanations of this phenomenon are

based on some type of turbulence,1,2 understanding anomalous transport is tantamount to

understanding plasma turbulence.

In tokamak research, a longstanding conjecture is that the observed anomalous plasma

transport is caused by some type of drift wave instability. Accordingly, for turbulent

fluctuations that are isotropic perpendicularly to the magnetic field, the energy replacement

time (τ E ) must exhibit a Bohm scaling [τ ρE a i∝ −Ω 1 2( / ) ] when k a⊥
−∝ 1, and a Gyro-

Bohm scaling [τ ρE a i∝ −Ω 1 3( / ) ] when k i⊥
−∝ ρ 1 (here and in the following, a is the

plasma minor radius, k⊥  is the fluctuation wave number perpendicularl to the magnetic

field, Ω  is the ion cyclotron frequency and ρi is the ion Larmor radius). For anisotropic

turbulence, predictions become more complex. For instance, τ E  can follow a Gyro-Bohm

scaling for k aθ ∝ −1 and k ar i∝ −( ) /ρ 1 2 (where kθ  and kr  are the poloidal and radial

components of k⊥ , respectively).

Empirical scalings of τ E  tend to support a Gyro-Bohm scaling, even though they all

contain other dimensionless parameters besides the normalized Larmor radius

ρ ρ* ( / )= i a . A case in point is that used to predict the performance of the International

Thermonuclear Experimental Reactor,3 which in standard notation is

τ ρ β ν κE M q AΩ ∝ − − − − −* *. . . . . . .2 70 0 90 0 01 0 96 3 0 0 73 2 3
95 . Unfortunately, such empirical scalings

find meager support in the existing data base of turbulence measurements.

The main difficulty in drawing any firm conclusion from fluctuation measurements is

their scarcity and limitations. For example, wave scattering measurements,4-8 which were

so prominent in early fluctuation studies, have a poor spatial resolution – in most cases

larger than the plasma minor radius. The method of Beam Emission Spectroscopy9

requires a perturbing neutral beam and has serious difficulties in detecting plasma

fluctuations in the central core of large tokamaks. The interpretation of microwave

reflectometry is extremely difficult, and in the best of cases it cannot be done

unambiguously.10-12 The inevitable conclusion is that, for advancing our understanding of

turbulence, we must improve the capability of our diagnostic tools.
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In this article, we describe a novel technique for the global visualization of short-scale

fluctuations with k i⊥ <ρ 1 in the main core of tokamak plasmas. The outline is as follows.

In Sec. II, the intrinsic difficulties and limitations in the use of standard reflectometry in

tokamaks are discussed and explained using the results of a series of numerical

simulations. The method of Microwave Imaging Reflectometry is described in Sec. III

together with a discussion of technical issues for its use in tokamaks. Results from the first

use of imaging reflectometry are presented in Sec. IV, and the conclusions are given in

Sec. V.

II. NUMERICAL RESULTS

The method of Microwave Imaging Reflectometry13 described in this article is a

technique for the visualization of density fluctuations with k i⊥ <ρ 1, such as those driven

by the Ion Temperature Gradient (ITG) mode. It is based on microwave reflectometry12 – a

radar technique for the detection of plasma density fluctuations using the reflection of

microwaves from a plasma cutoff. Because of the high sensitivity to plasma fluctuations,

microwave reflectometry has found extensive use for the detection of turbulence in

tokamaks. Unfortunately, very often the high sensitivity makes it very difficult to extract

any quantitative information from the measured signals. The root of the problem is

illustrated in Figs. 1(a) and 1(b), which show schematically the main difference between

reflectometry in a 1D and 2D geometry, the latter being obviously the case of interest for

tokamaks.

The interpretation of reflectometry in a 1D geometry [Fig. 1(a)] is relatively simple. In

this case, a plane stratified plasma permittivity ε ε ε= +0( ) ˜( )r r  [with fluctuation

component ˜( )ε r <<1] is probed by a wave propagating in the r-direction. Under these

conditions, it is easy to show that, when the radial wave number of fluctuations satisfies

the condition k k k Lr < 0 0
1 3/( ) /

ε  [where L d dr r rcε ε= =
−( / )0

1  is the scale length of the plasma

permittivity at the cutoff r rc=  and k0  is the free-space wave number of the probing

beam], the fluctuating phase of the reflected signal is given by the approximation of

geometric optics12

˜ ˜( )

( )
φ ε

ε
= ∫k

r

r

r
dr

c
0

0
0  

  . (1)

Taking | | /k Lr  >1 ε  (since we are interested in short-scale fluctuations) and

ε ε0( ) ( ) /r r r Lc≈ −  (since most of the contribution to φ̃ comes from a narrow region near
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the cutoff), for ( | | / ) /2 11 2k Lr ε π >>  we obtain10,12

Γ Γφ π( )
| |

( )k M
k L

k
kr

n

r
n r= 0

2
 

 

 

 
 , (2)

where L n dn drn r rc
= =/( / )  is the scale length of the electron density n, M n n r rc

≡ =( / )∂ε ∂
(≈1 for the ordinary mode and ≈ 2 for the extraordinary mode), Γφ ( )kr  is the power

spectrum of φ̃ (considered as a function of rc ) and Γn rk( ) is the power spectrum of the

relative plasma density fluctuation ˜ /n n . In summary, the power spectrum of 1D

fluctuations ( Γn ) can be obtained from the power spectrum of the signal phase (Γφ ). The

latter can be obtained with radial correlation measurements using several probing waves

with closely spaced cutoff layers.

The interpretation of reflectometry becomes considerably more complicated in the case

of multidimensional fluctuations where, as in the case of tokamaks, the plasma permittivity

varies perpendicularly to the direction of propagation of the probing wave [Fig. 1(b)]. In

this case, the measured backward field cannot be described as a specular reflection of the

probing wave, and, more importantly, its properties may differ drastically from those of

plasma fluctuations. This can be easily seen by taking a 2D wave permittivity

ε ε ε= +0( ) ˜( , )r r x  and assuming that near the cutoff the reflected wave can be cast in the

form exp( ˜( ))i xφ , with ˜( )φ x  given by Eq. (1). Since the phase of the probing wave is the

cumulative result of many random contributions, we may assume that φ̃ is a normal

random variable with mean < >=φ̃ 0, variance σ φφ
2 2≡< >˜  and autocorrelation

γ ξ φ φ ξ σφ φ( ) ˜ ( ) ˜ ( ) /≡< + >1 2
2x x . From this, we find that the first moment of the wave

electric field (i.e., the amplitude the coherent specular reflection) is < >= −E exp( / )σφ
2 2 ,

and thus it is a decreasing function of σφ . For the second moment, we obtain

< >= − −E E1 2
2 1* exp[ ( )]σ γφ φ , which shows that the signal correlation length is also a

decreasing function of σφ . In particular, for σφ >>1, taking γ ξ ξφ( ) exp[ ( / ) ]= − ∆ 2  and

expanding to the second order in ξ , we obtain < >≈ −E E
 

 1
2

2
* exp[ ( / ) ]σ ξφ ∆ . Therefore, in

the presence of large 2D density fluctuations, the spectrum of reflected waves becomes

broader than the spectrum of φ̃ by a factor of σφ . Consequently, if ∆kx  is the width of

fluctuations in the x-direction and σφ∆k kx << 0 , the reflected waves are spread over the

range of wave numbers δ σφk k kr x≈ 2 2
02∆ /  [Fig. 1(b)], so that an observer at a distance

from the cutoff that is larger than 1/δkr  (as in large tokamak experiments) will sample a

complicated interference pattern, with large amplitude variations and random phases. This

suggests that for a signal with unit average power, its amplitude ρ must follow the



5

distribution derived by Rice14 for the case of a signal containing a coherent sinusoidal

component and a Gaussian noise, which is given by

P I( )
( )/

ρ ρ
σ

ρ ρ σ ρρ
σ

=
− + 



 

   

e
2

2
0
2 2

0
2

2
0  , (3)

where I0  is the modified Bessel function of order zero, ρ0  is the amplitude of the coherent

component, and σ ρ2
0
21 2( ( ) / )= −  is the variance of both the real and the imaginary parts

of the Gaussian noise. For large fluctuations with σφ
2 1>> , ρ0 ≈0 [since ρ σφ0

2 2≈ −exp( )]

and Eq. (3) becomes the Rayleigh distribution 2 2ρ ρexp[ ]− . This result, which we have

derived from simple and somewhat arbitrary assumptions, appears to describe very well

the experimental observed behavior of reflectometry signals from large tokamaks, as

demonstrated in Fig. 2 where the in-phase (I) and quadrature (Q) components of a

reflectometer signal from a Tokamak Fusion Test Reactor (TFTR) plasma are shown

together with the density distribution of the amplitude ρ = +I Q2 2 . Both the I/Q plot and

the amplitude density distribution in Fig. 2 are consistent with the above arguments if we

assume σφ
2 1>> .

If it is true that the problem of standard reflectometry arises from the interference of

reflected waves at the point of measurement, Fig. 1(c) suggests that the remedy is to collect

the reflected waves with a wide aperture optical system and to form an image of the cutoff

onto the detector plane. This conjecture was tested with a series of numerical

simulations13,15 using a plane-stratified plasma equilibrium with density n r( ) and a field of

2D density fluctuations ˜( , )n r x  (r and x representing the radial and poloidal coordinates of

a tokamak configuration). In the following, we summarize the major results obtained using

a TFTR-like density profile and a probing wave with a frequency of 75 GHz and the

ordinary mode of propagation.

The first result is that at the plasma boundary, similarly to the experimental case of Fig.

2, the reflected waves exhibit large and random phase and amplitude modulations [Figs.

3(a) and 4(a)]. The case shown in these figures is that of 2D turbulent fluctuations with a

nearly Gaussian spectrum having a poloidal width ∆kθ=0.5 cm-1, a radial width ∆kr =1.0

cm-1 and a total density fluctuation ˜ /n n=1%. For comparison, the dotted line in Fig. 4

shows the phase of 1D geometric optics [Eq. (1)], which is our only tool for obtaining a

measure of the plasma density fluctuation from reflectometry signals. Figure 4(a)

demonstrates that this is not possible when signals are detected at a large distance from the

plasma cutoff, as in most reflectometry experiments. However, as suggested by Fig. 1(c),
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one could sample the field of reflected waves at other locations by creating an image onto

the plane of measurement with an optical system. Numerically, this can be easily

accomplished by projecting back in space the solution of the wave equation. Our numerical

simulations indicate [Figs. 3(b) and 4(b)] that fluctuations in the amplitude of the

backward field are minimum on a plane (virtual cutoff) behind the cutoff, where the

fluctuating part of the phase is identical to the phase of Eq. (1). The displacement of the

virtual cutoff from the real cutoff is explained by the fact that the reflected waves

propagate in a medium with refractive index less than unity. Finally, as shown in Fig. 4(c),

we find that the phase of Eq. (1) is almost identical to the normalized density fluctuation in

front of the real cutoff, i.e., where the spatial structure of the probing wave (~ Airy

function) has its maximum value. For the case of Fig. 4, this occurs at approximately 1 cm

in from the cutoff.

In conclusion, these results could be summarized by saying that the field of reflected

waves arises near the cutoff from a phase modulation of the probing wave, with a

magnitude given by 1D geometric optics. Since the reflected waves propagate in a non-

uniform medium with permittivity less than unity, the backward field appears to arrive

from a distant point behind the cutoff, where it can be approximated by a plane wave

E i x= exp[ ˜( )]φ , with φ̃ given by Eq. (1). The problem of 2D fluctuations has been reduced

to a 1D problem, and data on plasma fluctuations can be obtained with the use of imaging

optics.

Obviously, this simple description of reflectometry must fail for large fluctuations. In

fact, we can easily derive two conditions for its validity. The first condition is obtained

from the criterion for the validity of 1D geometric optics,12 given by ∆k k k Lr < 0 0
1 3/( )ε

/ .

The second condition can be derived from the fact that the field of reflected waves arises

from the nonlinear coupling of the various mode of propagation. Since for each spectral

component of the backward field this occurs mainly near the corresponding reflecting

point, our model of reflectometry must fail when the turning points of reflected waves are

distributed over a distance ∆rc  that is comparable to the radial scale length of fluctuations

( ∆kr
−1), i.e., when ∆ ∆k rr c >1. Since for large fluctuations (i.e., σφ

2 1>> )

∆ ∆r L k kc / /ε φ θσ≈ 2 2
0
2, this condition becomes σφ ε θ

2
0
2 2< k L k kr/ ∆ ∆ , which can be cast in

the form
˜

/

n

n L kn
< 1

3 4π θ ∆
 (4)
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by using Eq. (2) [valid for ( | | / ) /2 11 2k Lr ε π >> ]. This condition is satisfied by the

fluctuation parameters in Fig. 4 (where Ln=50 cm). On the other hand, for slightly

different fluctuations parameters ( ∆kθ=1.0 cm-1, ∆kr =1.0 cm-1, ˜ /n n=1.5%) not satisfying

Eq. (4), we obtain the results of Fig. 5 showing a backward field that is affected

everywhere by large amplitude and phase fluctuations.

III. MICROWAVE IMAGING REFLECTOMETRY

In this section, we discuss some technical issues in the application of microwave

imaging reflectometry to tokamaks. Figure 6 illustrates schematically the basic imaging

scheme, where the probing and reflected beams enter and exit the vacuum chamber

through the same window, and share a common set of primary optics. The reflected beam

is separated from the probing beam with a beam splitter, and is focused onto an array of

detectors.

Though the primary optics are shared between the probing and the reflected beam, the

optical elements do not perform the same function during illumination and detection. For

the probing wave, their role is to tailor the wave front to the shape of the cutoff surface,

thus making the wave rays impinge perpendicularly upon the cutoff surface, thereby

minimizing the deleterious effect of plasma refraction on the spectrum of probing wave

numbers.13 To perform this function, the optical system must have two different focal

points, one located at the center of the torus in the equatorial plane, the second at the center

of curvature of the cutoff surface in the poloidal plane. It should also be noted that without

this curvature matching, any small deviation in the radial position of the cutoff would

cause large deviation of the reflected beam, and degradation of the spectrum of collected

radiation. By using the curvature-matching technique, cutoff surfaces over a wide range of

densities can be illuminated with minimal changes to the illumination optics.

For the reflected wave, the function of the optical system is that of creating an image of

the virtual cutoff onto an array of detectors. This is illustrated in Fig. 6(b), which shows the

reflected beam from three points of the virtual cutoff (located behind the actual cutoff as

described in Sec. II). To overcome the limitation on the amount of power available for the

probing beam, it may be convenient to use additional optics (not shown in Fig. 6) for

demagnifying the image as much as possible consistently with the detector element size.
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Furthermore, additional optics may also be needed to compensate for the two different

focal points of the primary optics.

In a realistic diagnostic configuration, the main optical limitation will be imposed by

the size of the vacuum window. Assuming that the rest of the optical system does not

vignette the reflected beam, and a Gaussian radiation profile for the detectors, the best

instrument resolution will be given by the Gaussian “spot-size” at the cutoff, given by

2 2δ λ π= d r/   (where δ is the Gaussian beam waist at the object plane, λ is the wavelength

of the probing beam, d is the distance from the aperture to the beam waist, and r is the

window radius). Clearly, it is possible for the instrument resolution to be different in the

toroidal and poloidal directions. Furthermore, the resolution of off-axis channels could be

degraded by further vignetting of the reflected signal.

The amount of coverage in the plasma, which also determines the lower limit of the kθ

resolution, will also be constrained by the window size. This is obvious from Fig. 6(a),

which shows how the size and location of the window relative to the cutoff surface

determine the illuminated plasma region. A further limitation is that, for avoiding

diffraction from the window edge, the beam profile must fall off near the window edges.

The viability of imaging reflectometry is dependent on the availability of sensitive

detectors. In this regard, there has been steady progress in the area of millimeter-wave

detectors, particularly in the design of arrays that could be inexpensively manufactured on

printed circuit boards, and therefore could be scaled up to large multichannel arrays.16

Figure 7 illustrates the conceptual design of a microwave imaging reflectometer for the

National Spherical Torus Experiment (NSTX), a low aspect ratio tokamak with the mission

of investigating the physics of high beta plasmas.17 Some of its parameters are major

radius 0.85 m, minor radius 0.67 m, toroidal magnetic field 0.3-0.45 T, plasma current 0.7-

1.4 MA, and central temperatures 0.5-2.0 keV.

Compared to the scheme of Fig. 6, the major innovation in the design of Fig. 7 is the

use of reflective optics for avoiding the spurious effects of internal reflections in refractive

optics. Figure 7(a) shows the ray trajectories (dashed lines) of a 65 GHz probing beam (X-

mode) together with the trajectories (solid lines) of the reflected wave in the absence of

plasma fluctuations. The coincidence of these two sets of trajectories demonstrates a nearly

perfect matching of the probing wave front to the cutoff curvature. Figure 7(b) shows the

ray trajectories of six backward waves that are born on the equatorial plane (near the

cutoff) with a wave number ≤ 2.0 cm-1 (to be compared with 0.5 cm-1 for the poloidal
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wave number of expected fluctuations in NSTX plasmas). These waves are focused on a

single point of the detector plane – the image of the virtual cutoff. The position of the latter

is indicated in Fig. 7(b) by the intersection of the dashed lines. The illuminated plasma area

is ~25 cm tall, resulting in a lower limit of 0.25 cm-1 for the wave number resolution.

Finally, the spatial resolution in the poloidal direction is ~0.5 cm.

IV. PRELIMINARY RESULTS

Recently, the first experimental application of imaging reflectometry to tokamaks has

been made on TEXTOR-9418 (Torus Experiment for Technology Oriented Research 94) a

circular cross section tokamak with a=0.50 m, R=1.75 m, and B ≤ 2.9 T. The reflectometer

was built using the optical components of an electron cyclotron emission (ECE) imaging

apparatus, which was used previously for the study of temperature fluctuations in

TEXTOR-94.19,20 Indeed, this underscores one of the main advantages of imaging

reflectometry, i.e., the possibility of sharing the optics with an ECE imaging system, and

thus making possible a tool for the simultaneous visualization of both density and

temperature fluctuations. The development of such a system is the goal of an ongoing

collaboration between the University of California at Davis, the Princeton Plasma Physics

Laboratory and the FOM Institute for Plasma Physics.

The prototype imaging reflectometer, whose scheme was basically that shown in Fig.

6, shared the vacuum window with the Thomson scattering apparatus. In this experiment,

both the probing frequency (84 GHz, X-mode) and the focal plane of the optics were held

fixed, and the electron density was ramped during the shot to bring the cutoff surface

through and beyond the focal plane of the optics. Figure 8 shows some I/Q plots from a

single channel recorded over several 3 ms time windows as the central plasma density

changed from 2.8x1019 m-3 at t=1.2 s [Fig. 8(a)], to 4.4x1019 m-3 at t=2.4 s [Fig. 8(d)].

During the density ramp, the cutoff position moved from 1.93 to 2.06 m [with an

intermediate position of 1.99 m at the time of both plots (b) and (c)].

The striking difference between plots (a,d) and (b,c) is in the level of amplitude

fluctuations, which is much larger in the former case. These data were collected in ohmic

plasmas where, apart from a small density rise, all plasma parameters were stationary.

Thus, consistent with the numerical results of Fig. 3, we attribute the much smaller level of

amplitude fluctuations of plots (b,c) to the in-focus condition of the virtual cutoff. This is
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confirmed by the agreement between the numerical estimate of its position in plots (b,c)

with the radial position of the focal plane, and by the fact that the distance between the

cutoffs of (a) and (b) or between those of (c) and (d) is larger than the optical depth of

focus.

The histograms of the signal amplitude are displayed in Fig. 9 together with the best fit

to the Rice probability distribution [Eq. (3)]. This shows that the amplitude of the coherent

reflection goes from zero during out-of-focus conditions, to close to unity when the virtual

cutoff is in-focus. The fact that the Rice distribution appears to describe the distribution of

amplitudes even during the in-focus conditions can be explained by a residual of amplitude

fluctuations, as shown by the numerical simulations [Fig. 3(b)], and by a nonperfect

focusing of the cutoff because of optical aberrations.

Another remarkable difference between the in-focus and the out-of-focus conditions is

the time evolution of the phase of measured signals. This is illustrated in Fig. 10, which

shows that during out-of-focus conditions the average rate of change is more than two

orders of magnitude larger than during in-focus conditions. This phenomenon, which

cannot be explained with the rise in density, is known in standard reflectometry as the

runaway-phase phenomenon. Similarly, the power spectra are also very different in the

two cases, as illustrated by Fig. 11 where the phase power spectrum is dominated by large

coherent MHD fluctuations when the cutoff is the in-focus, while it becomes a featureless

1/f2 spectrum when the cutoff goes out-of-focus. What is remarkable is that in the latter

case, the spectrum does not give the slightest hint of the presence of large MHD

fluctuations. Again, this is a known phenomenon in standard reflectometry,12 whose cause

has always been a matter of conjecture. This effect appears to be fully explained by our

measurements.

These measurements confirm the validity of our numerical results (Sec. II) that are at

the basis of microwave imaging reflectometry, and clearly demonstrate the advantages of

this technique over standard reflectometry – regardless of whether the measurement is a

single or a multi-point measurement. The fact that the introduction of focusing optics

allows multiple channels measurements must be considered just a fringe benefit of the

proposed method.



11

V. CONCLUSION

In summary, our numerical results support the conjecture that the chaotic behavior of

signals in standard reflectometry is due to the interference of reflected waves at the point of

measurement. This is caused by the scattering of reflected waves over a large angle by the

2D structure of tokamak fluctuations. The numerical results suggest that a mapping of

fluctuations near the cutoff could be obtained from the phase of measured signals if the

reflected waves are collected with a wide aperture antenna, and an image of the cutoff is

made onto an array of microwave detectors (taking plasma refraction into account). These

conclusions appear to be fully confirmed by measurements on TEXTOR-94 using a

prototype imaging reflectometer.

These results form the basis of an apparatus – currently under construction – that will

be used on TEXTOR-94 for the study of turbulent fluctuations in plasmas with a dynamic

ergodic divertor. The reflectometer will operate in the frequency range 84-90 GHz using

the optical scheme of Fig. 7, which will be shared with an electron cyclotron imaging

system20 operating in the frequency range 110-140 GHz. A dichroic plate will be used to

separate the reflectometer signal from the plasma cyclotron emission.

In conclusion, the method described in this article must be considered an attempt at

developing techniques for the global visualization of turbulent and coherent structures with

microwave reflectometry. Undoubtedly, its practical implementation presents serious

difficulties, such as the need for large machine ports and 2D arrays of microwave

detectors. Nevertheless, this technique has the potential for providing new and important

information on the spatial structure of turbulent fluctuations in tokamaks and spherical tori.
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FIGURES CAPTIONS

Figure 1. Schematic representation of standard reflectomery in 1D (a) and 2D (b)

geometry, and that of imaging reflectometry (c).

Figure 2. In-phase (I) and quadrature (Q) components of a TFTR reflectometer signal

(left) and probability density distribution of the amplitude ρ = +( ) /I Q2 2 1 2

(right). Dashed line is the Rayleigh distribution.

Figure 3. Plot of the complex amplitude of reflected waves at the plasma edge (a)

and at the virtual cutoff (b) for ∆kθ =0.5 cm-1, ∆kr =1.0 cm-1, and

˜ /n n=1.0%).

Figure 4. Phase fluctuation of reflected signals at the plasma boundary (a) and the

virtual cutoff (b), and normalized density fluctuation near the cutoff (c);

dashed lines are the phase of 1D geometric optics ( ∆kθ =0.5 cm-1, ∆kr =1.0

cm-1, and ˜ /n n=1.0%.).

Figure 5. Plot of the complex amplitude of reflected waves at the plasma edge (a)

and at the virtual cutoff (b) for Ln =50 cm, ∆kθ =1.0 cm-1, ∆kr =1.0 cm-1,

and ˜ /n n=1.5%.

Figure 6. Schematic diagram of an imaging reflectometer showing probing (a) and

reflected beams (b).

Figure 7. Conceptual design of an imaging reflectometer for NSTX; S is the microwave

source, M1 and M2 are cylindrical mirrors. Ray trajectories are from a ray

tracing code including plasma refraction.

Figure 8. Quadrature signals plots (normalized to unit average power) over a 3 msec

time window as the cutoff moves through the optical focal plane because of

a density rise. Cutoff positions are 1.93 m (a), 1.99 m (b,c), and 2.06 m (d).

Figure 9. Amplitude histograms of the signals of Fig. 9 and best fit to a Rice distribution

(smooth lines). The Rice parameters [ ρ σ0, ] are [0.00, 0.71] (a), [0.95, 0.22]

(b), [0.98, 0.14] (c), [0.00, 0.71] (d).

Figure 10. Time evolution of the signal phase during out-of-focus (a) and in-focus (b)

cutoff positions.

Figure 11. Power spectrum of the signal phase for out-of-focus (a) and in-focus (b)

cutoff positions.
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(a) (b)

(c) (d)

Figure 8. Quadrature signals plots (normalized to unit average power) over a 3 msec

time window as the cutoff moves through the optical focal plane because of a density

rise. Cutoff positions are 1.93 m (a), 1.99 m (b,c), and 2.06 m (d).
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Figure 9. Amplitude histograms of the signals of Fig. 9 and best fit to a Rice distribution

(smooth lines). The Rice parameters [ ρ σ0, ] are [0.00, 0.71] (a), [0.95, 0.22] (b), [0.98,

0.14] (c), [0.00, 0.71] (d).
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